LSE LSE Research Laboratory LSE
LSE Research Laboratory (RLAB)

Abstract for:

Spatial Methods

Steve  Gibbons,  Henry G.  Overman,  Eleonora  Patacchini,  August 2014
Paper No' SERCDP0162: | Full paper (pdf)
Save Reference as: BibTeX BibTeX File | Endote EndNote Import File
Keywords: Spatial analysis, spatial econometrics, neighbourhood effects, agglomeration, weights matrix

JEL Classification: R; C1; C5

Is hard copy/paper copy available? YES - Paper Copy Still In Print.
This Paper is published under the following series: SERC Discussion Papers
Share this page: Google Bookmarks Google Bookmarks | Facebook Facebook | Twitter Twitter

Abstract:

This paper is concerned with methods for analysing spatial data. After initial discussion on the nature of spatial data, including the concept of randomness, we focus most of our attention on linear regression models that involve interactions between agents across space. The introduction of spatial variables in to standard linear regression provides a flexible way of characterising these interactions, but complicates both interpretation and estimation of parameters of interest. The estimation of these models leads to three fundamental challenges: the reflection problem, the presence of omitted variables and problems caused by sorting. We consider possible solutions to these problems, with a particular focus on restrictions on the nature of interactions. We show that similar assumptions are implicit in the empirical strategies - fixed effects or spatial differencing - used to address these problems in reduced form estimation. These general lessons carry over to the policy evaluation literature.